Generalised de Bruijn


Buatlah sebuah digraph dengan order 9 dan out degree 3 dengan diameter 2 !
Penyelesaian :
v ≡ du + i ( mod n )
dengan :
d = 3
u = vertex
i = d – 1 = 0, 1, dan 2
k = 2
n = dk = 32 = 9
vertices : 0, 1, 2, 3, 4, 5, 6, 7, 8

. vertex 0 3 x 0 + 0 ( mod 9 ) = 0
vertex 0 3 x 0 + 1 ( mod 9 ) = 1
vertex 0 3 x 0 + 2 ( mod 9 ) = 2
. vertex 1 3 x 1 + 0 ( mod 9 ) = 3
vertex 1 3 x 1 + 1 ( mod 9 ) = 4
vertex 1 3 x 1 + 2 ( mod 9 ) = 5
. vertex 2 3 x 2 + 0 ( mod 9 ) = 6
vertex 2 3 x 2 + 1 ( mod 9 ) = 7
vertex 2 3 x 2 + 2 ( mod 9 ) = 8
. vertex 3 3 x 3 + 0 ( mod 9 ) = 0
vertex 3 3 x 3 + 1 ( mod 9 ) = 1

vertex 3 3 x 3 + 2 ( mod 9 ) = 2
. vertex 4 3 x 4 + 0 ( mod 9 ) = 3
vertex 4 3 x 4 + 1 ( mod 9 ) = 4
vertex 4 3 x 4 + 2 ( mod 9 ) = 5
. vertex 5 3 x 5 + 0 ( mod 9 ) = 6
vertex 5 3 x 5 + 1 ( mod 9 ) = 7
vertex 5 3 x 5 + 2 ( mod 9 ) = 8
. vertex 6 3 x 6 + 0 ( mod 9 ) = 0
vertex 6 3 x 6 + 1 ( mod 9 ) = 1
vertex 6 3 x 6 + 2 ( mod 9 ) = 2


. vertex 7 3 x 7 + 0 ( mod 9 ) = 3
vertex 7 3 x 7 + 1 ( mod 9 ) = 4
vertex 7 3 x 7 + 2 ( mod 9 ) = 5
. vertex 8 3 x 8 + 0 ( mod 9 ) = 6
vertex 8 3 x 8 + 1 ( mod 9 ) = 7
vertex 8 3 x 8 + 2 ( mod 9 ) = 8